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ABSTRACT
To forge effective collaborations with humans, robots require the
capacity to understand and predict the behaviors of their human
counterparts. There is a growing body of computational research
on human modeling for human-robot interaction (HRI). However,
a key bottleneck in conducting this research is the relative lack
of data of human internal states – like intent, workload, and trust
– which undeniably affect human behavior. Despite their signifi-
cance, these states are elusive to measure, making the assembly
of datasets a challenge and hindering the progression of human
modeling techniques. To help address this, we first introduce Res-
cue World for Teams (RW4T): a configurable testbed to simulate
disaster response scenarios requiring human-robot collaboration.
Next, using RW4T, we curate a multimodal dataset of human-robot
behavior and internal states in dyadic human-robot collaboration.
This RW4T dataset includes state, action and reward sequences, and
all the necessary data to replay a visual task execution. It further
contains psychophysiological metrics like heart rate and pupillome-
try, complemented by self-reported cognitive state measures. With
data from 20 participants, each undertaking five human-robot col-
laborative tasks, this dataset accompanied with the simulator can
serve as a valuable benchmark for human behavior modeling.
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1 STUDY OVERVIEW
Robots are becoming integral to various industries such as health-
care, manufacturing, and disaster response. However, their integra-
tion into industries, especially small and medium-sized enterprises,
is hindered since robots need to operate at a slower speed or halt en-
tirely near humans to ensure safety [22, 26]. For robots and humans
to collaborate effectively, it is essential that robots can infer human
internal states1 and predict human actions accurately [10, 14, 25, 27].
Recognizing this need, multiple data-driven techniques have been
developed to model human behavior, including imitation learning
[15, 19, 23], batch learning from observations [11], and probabilistic
models [12, 18, 30]. However, majority of these techniques are vali-
dated using benchmarks like OpenAI Gym [2] that do not model
human-robot interaction, due to the lack of suitable HRI datasets.

To ensure applicability for HRI in the real world, these techniques
must be tested on challenging and realistic data of human-robot
behavior. However, the paucity of such data has limited its use
in validation processes. Gathering this kind of data is inherently
challenging as human behavior is influenced by a myriad of factors.
Some of these are directly observable, like environmental condi-
tions, while others, such as fatigue, workload, and trust, are latent
and less tangible [21, 28, 29, 31].A review of the existing datasets,
as shown in Table 1, underscores that most lack annotations
related to these latent human states. Although direct measure-
ment of human internal states is challenging, they can be indirectly
estimated through physiological metrics, such as heart rate and
pupillometry, and through self-assessment instruments [3, 8, 9, 16].

To address this need, in this paper, we provide RW4T dataset:
a benchmark dataset of human-robot behavior with annotation
of human internal states. To compile this dataset, we followed a
two-phase approach. 1) Simulation Development: Using the Unity
simulation engine, we developed Rescue World for Teams (RW4T).

1We use the term human internal states as an umbrella term to refer to cognitive
constructs such as workload and intent, which are latent but impact human behavior.
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Dataset Behavior Internal States Simulator

RW4T (ours) ✓ multiple ✓
MoGaze [13] ✓ intent -
MHHRI [5] - engagement -
UE-HRI [1] - engagement -
Robosuite [32] - - ✓
MineRL [6] ✓ - ✓

Table 1: An overview of relevant datasets. Behavior refers to
task-oriented MDP (state-action)-trajectories.

This configurable testbed is designed to mimic disaster response
scenarios that require human-robot collaboration. 2) Data Collec-
tion: We invited participants to engage with RW4T, performing
specific tasks while we monitor their behavior and cognitive states.
The core task for participants was to deliver medical kits to desig-
nated points in a simulated disaster, with the assistance of a robot
drone. Additionally, to induce varying levels of cognitive workload,
participants were given secondary tasks to manage concurrently.
Through this process, we curated a dataset of 100 trajectories from
20 participants, each undertaking five 2.5-minute HRI tasks.

The RW4T dataset is multimodal, encompassing raw continuous
task features derived from the Unity simulation; processed state-
action sequences; physiological metrics derived from the Zephyr
BioHarness and Tobii Pro Eyetracker; self-reported measures of
workload, trust, and engagement; and demographic data such as
age, gender, and expertise in video games. Notably, expertise in
video games offers insight into a participant’s comfort level with
virtual environments. Such expertise can substantially influence
performance in the simulated tasks. Thus, it is an important variable
in the analysis of behavioral data collected from RW4T.

A key feature of RW4T dataset is the availability of state-action
sequences with associated annotations of human internal
states, distinguishing it from other available datasets (cf. Table 1).
The RW4T simulator and data together can be used in various
facets of human modeling for HRI research. These include training,
validation, and testing of predictive models of human behavior; in-
vestigations of how humans lean on robotic autonomy, especially in
high-workload scenarios; determining the most suitable features for
predicting human behavior; and delving into how human internal
states shape the dynamics of human-robot collaboration.

2 METHODS
We now detail our approach to compile the RW4T dataset, which
involved two phases: simulation creation and data collection.

2.1 Simulation Development
We designed a configurable simulation testbed called Rescue World
for Teams (RW4T). RW4T simulates urban search-and-rescue tasks,
which need to be collaboratively completed by a human-robot team.
RW4T is implemented in Unity Engine to achieve photorealism
and includes an API to facilitate data collection and task design.
Further, RW4T includes secondary tasks and question prompts to
easily modulate and measure human internal states corresponding
to workload, intent, engagement, and trust. Finally, the testbed has

Figure 1: First-person view of RW4T shows medical kits dis-
tribution and remaining time in the upper corners. The cur-
rent score, with the maximum possible in parentheses, is in
the middle. Participants control the robot drone via the robot
panel, but the ‘Auto’ autonomy feature was disabled for this
data collection. Above the robot panel is the minimap, which
shows the full map (see Figure 2) when clicked. The lower
right corner displays the F9-F12 windows, the interface for
adjusting human cognitive workload in the secondary task.

been integrated with physiological sensors and lab streaming layer
(LSL) to enable measurement of psychophysiological quantities that
provide alternate mechanisms to estimate the ground truth values
of human internal states [3, 9, 16].

2.1.1 Primary Task. As shown in Figs. 1-2, RW4T simulates dy-
namic and uncertain urban environments impacted by disasters.
Some areas in the environment are unsafe for humans to enter and
are marked as hazardous. Other areas are in need of rescue opera-
tions (i.e., delivery of medical supplies). A human first-responder
is tasked with completing the rescue operations, with the help of
a robot. The human-robot team’s goal is to complete all rescue
operations as soon as possible, while minimizing human exposure
to the hazardous area. The team receives positive rewards for com-
pleting each rescue operations and negative rewards when the first
responder enters the hazardous zone.

To successfully complete the task, the human-robot team needs
to intelligently allocate tasks among teammembers. To enable study
of HRI in a variety of scenarios, the task and environment can be
reconfigured through a configuration API. For instance, one can
change the environmental map, number and location of hazards,
number and rescue locations, task rewards, and horizon. Further, the
robot can be operated as autonomous (where it operates according
to a predefined policy) or semi-autonomous (where it executes a
goal-conditioned policy given a user’s goal command).

In our data collection, the robot is configured as semi-autonomous.
To emulate the unpredictable nature of robots, the drone was pro-
grammed with a 30% failure rate, potentially impacting participants’
trust in its capabilities. The speed of the robot drone and the par-
ticipant on the simulation testbed can also be configured. There
is a trade-off between speeds and the time limit for completing a
task: if the robot drone is faster than the participant, the participant
will be prone to rely solely on the robot drone. Similar effect might
occur if the time limit is large enough. Mathematically, the task can
be viewed as a multi-agent Markov decision process (MDP), with
fixed time horizon [17, 20].
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Figure 2: Configuration of RW4T map. Red dots represent lo-
cations to drop off medical kits, while hazard signs represent
unsafe areas. The H and R arrows at the lower corners are
the current positions of the human and robot, respectively.

2.1.2 Secondary Task. The simulator also includes an (optional)
secondary task interface to allow researchers to modulate human
cognitive states corresponding to workload. The secondary task
design is informed by the system monitoring task from OpenMATB
[4]. The human needs to monitor a panel of 4 gray buttons and
press the corresponding key when a button changes color to yellow.
The frequency of color change depends on the desired difficulty of
the secondary task, which can be specified via the configuration
API. The participant has limited time (default=3 seconds) to press
the corresponding key (F9, F10, F11, F12) to restore it to base
color. If the secondary task is fulfilled successfully, the participant’s
reward increases by preset number of points (default=10), else
they receive a penalty. Similar to the primary task, secondary task
parameters (difficulty, reward, penalty) too can be configured.

2.1.3 Human Internal States. The simulator can readily capture
environmental and behavioral data corresponding to the rescue
task using the Unity engine, which can be further extracted via its
Python API. Additionally, to estimate human internal states, RW4T
includes two mechanisms: user prompts and integration with phys-
iological sensors. For instance, to measure workload, the simulator
can prompt users to report their workloads at a fixed frequency
[7, 24]. We also provide integration with LSL and Python scripts
to collect, synchronize, and process physiological measurements
using Tobii eye tracker and Zephyr BioHarness [3, 9, 16].

2.2 Data Collection
Using the simulator, we collect data of human-robot behavior and
human internal states through a human subject study, which was
approved by Rice University’s Institutional Review Board.

2.2.1 Participants. The dataset includes behavior of 20 partici-
pants, mostly campus graduate students and researchers. Their
ages ranged from 19 to 54 years, median age = 27 years, 9 female.

2.2.2 Experimental Procedure. After giving informed consent, par-
ticipants completed a demographic survey (Table 2), wore the Bio-
Harness, and completed the calibration process of the eye tracker.
To establish baseline physiological measurements, participants were
requested to wait in front of the monitor for 3 minutes. They were

ID Demographic question

1 Age
2 Gender
3 What is your prior experience with video games
4 How often do you play video games?
5 On average, how much time do you spend each time

you play a video game (in minutes)?
6 Open-ended comments (optional)
ID Post task questions

1 How much mental and perceptual activity was required
(e.g., thinking, deciding, calculating, remembering, look-
ing, searching, etc.)?

2 How much time pressure did you feel due to the rate or
pace at which the tasks or task elements occurred?

3 How successful do you think you were in accomplishing
the goals of the task?

4 Howhard did you have towork (mentally) to accomplish
your level of performance?

5 How stressed did you feel during the task?
ID In-task questions

1 Rate your workload from 1 (low) to 5 (high)
2 Rate trust in robot from 1 (low) to 5 (high)
3 Rate level of engagement from 1 (low) to 5 (high)

Table 2: Experimental Questionnaires

Scenario Duration Secondary Task Intensity

(min) Period 1 Period 2

Tutorial ≈20 - -
Training trial 3 Low Low

Test trial #1 2.5 Low Low
Test trial #2 2.5 Low High
Test trial #3 2.5 High Low
Test trial #4 2.5 High High
Test trial #5 2.5 Low Low
Table 3: Overview of Experimental Procedure

then introduced to the RW4T simulator and experimental tasks
through a tutorial and training trial. Participants completed five
test trials, delivering 6 medical kits in each (Figure 2), with trials
divided into low and high intensity periods for secondary tasks
(c.f. Table 3). The high intensity periods involved a secondary task
every five seconds, and no secondary tasks in low intensity periods.
Participants filled out questionnaires during and post-trial.

2.2.3 Measurements. Task states, team actions, and physiological
measurements were recorded throughout the whole experiment
session. In-task questionnaires, listed in Table 2 were administered
during each trial by pausing the task every 75 sec. The customized
NASA-TLX questionnaire of Table 2 was administered upon com-
pletion of each trial [7]. Multimodal data arriving from different
sources (Unity, physiological sensors, and questionnaires) was syn-
chronized using the Lab Streaming Layer (LSL).
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2.2.4 Compensation. Participants were compensated with $12 for
their participation. We further motivated participants by awarding
additional $12 to the best teaming performance with the robot.2

3 RW4T DATASET
The RW4T data consists of 100 trajectories of human-robot behavior
and human internal states. As detailed in Sec. 4, the data is housed
in a public GitHub repository. In this section, we summarize the
structure, contents, and limitations of the dataset.

Data derived from the Unity Simulator. The dataset includes two
versions of behavioral measurements: raw and trajectories. The
raw data is provided as seven csv files per participant, correspond-
ing to two training trials and five test trials. Each file contains time
series data collected at 60 Hz of the task-relevant features (such as
coordinates of the participant and robot, status of medical kits) and
participants’ actions (such as keyboard inputs and mouse clicks).
Please refer to the associated data description (stored in the parent
GitHub repository) for a complete list of raw features. The raw data
provides uncompressed information about the task and, thus, can
be used to replicate participants’ trials. To facilitate algorithmic
HRI research, we also provide processed version of this data in
the form of MDP (state, action)-trajectories. This format is typically
used in human modeling and imitation learning research to learn
behavioral policies. We include both discrete and continuous repre-
sentation of the task state, which consists of participant’s position,
robot’s state, and the status of medical kits. We manually append
the state-action trajectories with intent annotations, by observing
the rescue locations the participant has visited. To arrive at the
discretized version of the data, we model the environment as a
10×10 grid. We also provide the script to convert the raw data to
its processed form. Using this script, the data can be processed at
an alternate discretization as needed in applications.

Data derived from the Physiological Sensors. Physiological indica-
tors can provide indirect measurements of human internal states
such as workload and trust [9, 16]. While these measurements are
indirect (i.e., they do not pinpoint the exact value of human internal
states without additional post-processing), they can be collected
at high temporal resolution without interfering with the HRI task.
The dataset includes eye tracking data collected at 60 Hz using
the Tobii Pro Nano sensor. The data is stored as one json file per
participant. Each file contains time-stamped values of gaze location,
pupil diameter for each eye, together with their validity. Further,
the dataset includes additional physiological data collected at 1 Hz
using the Zephyr BioHarness. This data is stored as one csv file per
participant. Each file contains time-stamped values of physiological
features such as heart rate, respiration rate, and posture.

Data derived from Questionnaires. Questionnaires provide direct
measurements of human internal states through self-reports. How-
ever, they are subjective in nature, and querying the user during
an ongoing task may be intrusive and hinder task performance [3].
The dataset includes responses to the NASA-TLX questionnaire,
2To quantify performance, the human-robot team was awarded 25 points for distribut-
ing each first aid kit and 10 points for completing a secondary task. The team was
penalized by 10 points for each unsuccessful attempt on a secondary task and for every
second the human spent in a radioactive zone. If the team completed the task before
the allotted time, the remaining time (in seconds) was added to their final score.

administered after each trial, and is stored in five csv files named as
‘Post-task #.csv’, where # is the trial number. Each row corresponds
to a single participant. Responses to in-task prompts are provided as
txt files, one corresponding to each participant. Lastly, the dataset
includes demographic responses, stored in one csv file, with each
row corresponding to one participant.

Data Organization. The simulator data, physiological data and re-
sponses to in-task questionnaires are grouped in the same folder
by the participant’s identifier, which is of the form ‘user###’, where
each # represents a digit, inside the raw directory. An additional
directory, named trajectories, contains files with MDP (state-
action) trajectories. Responses to the post-task (NASA-TLX) and
demographic questionnaires are located in the outer directory. Each
row corresponds to a participant, which can be matched with the
rest of the collected data through completion timestamps.

4 USAGE NOTES
Repositories and Documentation. The RW4T dataset, the epony-
mous simulator, and the scripts to collect and process data can be
found at https://github.com/unhelkarlab/rw4t-dataset. The repos-
itory also offers documentation and scripts for loading the data
specifically for research on human behavior modeling.

Implications. The RW4T dataset can serve as a useful benchmark
for training and validating techniques for predictive modeling of
human behavior in HRI. The trajectories in the dataset are diverse,
making the human modeling task both realistic and challenging. It
contains multimodal measures of human internal states and demo-
graphic data, both of which are intrinsically tied to human decision-
making processes. Incorporating this data allows for generation of
robust and personalized models of behavior, enhancing the efficacy
and cohesion of human-robot collaboration. Furthermore, the multi-
modal data can allow researchers to analyze human-robot teaming
at different levels of abstraction. For instance, besides predictive
models, the dataset can be used to investigate how humans lean on
robotic autonomy and how robot failures affect this process.

Contributing to the Dataset. Researchers using this dataset should
also recognize its limitations. It was curated within a controlled
experimental setting, restricted to search and rescue scenarios, with
data corresponding to 20 individuals recruited from Rice University,
with fixed robot failure rate to lessen the variability in this already
highly variable dataset. As such, it is expected to represent only a
subset of HRI scenarios observed in the real world. To facilitate mit-
igating some of these limitations, we also release the configurable
RW4T simulator and data collection scripts. These artifacts can help
researchers collect additional data of human-robot behavior, in the
context of simulated disaster response. We hope that researchers
as needed use the simulator to not only collect more data but also
share the new data with the community, thereby making the dataset
more comprehensive for its applications in HRI research.
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